
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

27

Arrays

3 Arrays
3.1 Introduction

A structured type of fundamental importance in almost every procedural programming language is the
array.

Array: A fixed length, ordered collection of values of the same type stored in contiguous
memory locations; the collection may be ordered in several dimensions.

The values stored in an array are called elements. Elements are accessed by indexing into the array:
an integer value is used to indicate the ordinal value of the element. For example, if a is an array with
20 elements, then a[6] is the element of a with ordinal value 6. Indexing may start at any number, but
generally it starts at 0. In the example above a[6] is the seventh value in a when indexing start at 0.

Arrays are important because they allow many values to be stored in a single data structure while
providing very fast access to each value. This is made possible by the fact that (a) all values in an array
are the same type, and henokce require the same amount of memory to store, and that (b) elements are
stored in contiguous memory locations. Accessing element a[i] requires finding the location where the
element is stored. This is done by computing b+ (i × m,) where m is the size of an array element, and
b is the base location of array a. This computation is obviously very fast. Furthermore, access to all the
elements of the array can be done by starting a counter at b and incrementing it by m, thus yielding the
location of each element in turn, which is also very fast.

Arrays are not abstract data types because their arrangement in the physical memory of a computer is
an essential feature of their definition, and abstract data types abstract from all details of implementation
on a computer. Nonetheless, we can discuss arrays in a “semi-abstract” fashion that abstracts some
implementation details. The definition above abstracts away the details about how elements are stored
in contiguous locations (which indeed does vary somewhat among languages). Also, arrays are typically
types in procedural programming languages, so they are treated like realizations of abstract data types
even though they are really not.

In this book, we will treat arrays as implementation mechanisms and not as ADTs.

3.2 Varieties of Arrays

In some languages, the size of an array must be established once and for all at program design time and
cannot change during execution. Such arrays are called static arrays. A chunk of memory big enough to hold
all the values in the array is allocated when the array is created, and thereafter elements are accessed using
the fixed base location of the array. Static arrays are the fundamental array type in most older procedural
languages, such as Fortran, Basic, and C, and in many newer object-oriented languages as well, such as Java.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

28

Arrays

Some languages provide arrays whose sizes are established at run-time and can change during execution.
These dynamic arrays have an initial size used as the basis for allocating a segment of memory for
element storage. Thereafter the array may shrink or grow. If the array shrinks during execution, then
only an initial portion of allocated memory is used. But if the array grows beyond the space allocated
for it, a more complex reallocation procedure must occur, as follows:

1. A new segment of memory large enough to store the elements of the expanded array is
allocated.

2. All elements of the original (unexpanded) array are copied into the new memory segment.
3. The memory used initially to store array values is freed and the newly allocated memory is

associated with the array variable or reference.

This reallocation procedure is computationally expensive, so systems are usually designed to minimize
its frequency of use. For example, when an array expands beyond its memory allocation, its memory
allocation might be doubled even if space for only a single additional element is needed. The hope is that
providing a lot of extra space will avoid many expensive reallocation procedures if the array expands
over time.

Dynamic arrays are convenient for programmers because they can never be too small—whenever more
space is needed in a dynamic array, it can simply be expanded. One drawback of dynamic arrays is that
implementing language support for them is more work for the compiler or interpreter writer. A potentially
more serious drawback is that the expansion procedure is expensive, so there are circumstances when
using a dynamic array can be dangerous. For example, if an application must respond in real time to
events in its environment, and a dynamic array must be expanded when the application is in the midst
of a response, then the response may be delayed too long, causing problems.

3.3 Arrays in Ruby

Ruby arrays are dynamic arrays that expand automatically whenever a value is stored in a location
beyond the current end of the array. To the programmer, it is as if arrays are unbounded and as many
locations as are needed are available. Locations not assigned a value in an expanded array are initialized
to nil by default. Ruby also has an interesting indexing mechanism for arrays. Array indices begin at
0 so, for example, a[13] is the value in the 14th position of the array. Negative numbers are the indices
of elements counting from the current end of the array, so a[-1] is the last element, a[-2] is the
second to last element, and so forth. Array references that use an out-of-bound index return nil. These
features combine to make it difficult to write an array reference that causes an indexing error. This is
apparently a great convenience to the programmer, but actually it is not because it makes it so hard to
find bugs: many unintended and erroneous array references are legal.

The ability to assign arbitrary values to arrays that automatically grow arbitrarily large makes Ruby arrays
behave more like lists than arrays in other languages. We will discuss the List ADT later on.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

29

Arrays

Another interesting feature of Ruby arrays has to do with the fact that Ruby is a pure object-oriented
language. This means (in part) that every value in Ruby is an object, and hence every value in Ruby is an
instance of Object, the super-class of all classes, or one of its sub-classes. Arrays hold Object values,
so any value can be stored in any array! For example, an array can store some strings, some integers, some
floats, and so forth. This appears to be a big advantage for programmers, but again this freedom has a
price: it much harder to find bugs. For example, in Java, mistakenly assigning a string value to an array
holding integers is flagged by the compiler as an error, but in Ruby, the interpreter does not complain.

Ruby arrays have many interesting and powerful methods. Besides indexing operations that go well
beyond those discussed above, arrays have operations based on set operations (membership, intersection,
union, and relative complement), string operations (concatenation, searching, and replacement), stack
operations (push and pop), and queue operations (shift and append), as well as more traditional array-
based operations (sorting, reversing, removing duplicates, and so forth). Arrays are also tightly bound
up with Ruby’s iteration mechanism, which will be discussed later.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

30

Arrays

3.4 Review Questions

1. If an array holds integers, each of which is four bytes long, how many bytes from the base
location of the array is the location of the fifth element?

2. Is the formula for finding the location of an element in a dynamic array different from the
formula for finding the location of an element in a static array?

3. When a dynamic array expands, why can’t the existing elements be left in place and extra
memory simply be allocated at the end of the existing memory allocation?

4. If a Ruby array a has n elements, which element is a[n-1]? Which is element a[-1]?

3.5 Exercises

1. Suppose a dynamic integer array a with indices beginning at 0 has 1000 elements and the
line of code a[1000] = a[5] is executed. How many array values must be moved from
one memory location to another to complete this assignment statement?

2. Memory could be freed when a dynamic array shrinks. What advantages or disadvantages
might this have?

3. To use a static array, data must be recorded about the base location of the array, the size of
the elements (for indexing), and the number of elements in the array (to check that indexing
is within bounds). What information must be recorded to use a dynamic array?

4. State a formula to determine how far from the base location of a Ruby array an element with
index i is when i is a negative number.

5. Give an example of a Ruby array reference that will cause an indexing error at run time.
6. Suppose the Ruby assignment a=(1̤100).to_a is executed. What are the values of the

following Ruby expressions? Hint: You can check your answers with the Ruby interpreter.
a) a[5̤10]
b) a[5…10]
c) a[5, 4]
d) a[-5, 4]
e) a[100̤105]
f) a[5̤-5]
g) a[0, 3] + a[-3, 3]

8. Suppose that the following Ruby statement are executed in order. What is the value of array
a after each statement? Hint: You can check your answers with the Ruby interpreter.
a) a = Array.new(5, 0)
b) a[1̤2] = []
c) a[10] = 10

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

31

Arrays

d) a[3, 7] = [1, 2, 3, 4, 5, 6, 7]
e) a[0, 2] = 5
f) a[0, 2] = 6, 7
g) a[0̤-2] = (1̤3).to_a

3.6 Review Question Answers

1. If an array holds integers, each of which is four bytes long, then the fifth element is 16 bytes
past the base location of the array.

2. The formula for finding the location of an element in a dynamic array is the same as the
formula for finding the location of an element in a static array. The only difference is what
happens when a location is beyond the end of the array. For a static array, trying to access or
assign to an element beyond the end of the array is an indexing error. For a dynamic array,
it may mean that the array needs to be expanded, depending on the language. In Ruby, for
example, accessing the value of a[i] when i ≥ a.size produces nil, while assigning a
value to a[i] when i ≥ a.size causes the array a to expand to size i+1.

3. The memory allocated for an array almost always has memory allocated for other data
structures after it, so it cannot simply be increased without clobbering other data structures.
A new chunk of memory must be allocated from the free memory store sufficient to hold
the expanded array, and the old memory returned to the free memory store so it can be
used later for other (smaller) data structures.

4. If a Ruby array a has n elements, then element a[n-1] and element a[-1] are both the
last element in the array. In general, a[n-i] and a[-i] both access the same element.

http://bookboon.com/

